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Teaching computers to fold proteins
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A new general algorithm for optimization of potential functions for protein folding is introduced. It is based
upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with
known structure. The iterative update rule contains two thermodynamic averages which are estimated by
(generalized ensembl&onte Carlo. We test the learning algorithm on a Lennard-Job&sforce field with
a torsional angle degrees-of-freedom and a single-atom side-chain. In a test with 24 peptides of known
structure, none folded correctly with the initial potential functions, but two-thirds came within g their
native fold after optimizing the potential functions.
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It is one of the long-standing challenges of science tonormalized difference between the native energy and the av-
simulate protein folding in a computer and predict the threeerage energy over all alternative conformati¢h8-13, the
dimensional structure—the native fold. According to Anfins-thermodynamic average of the overlap to the native state in a
en’s hypothesis the native fold of a protein is the one withcontact map energy mod§l3,14 and linear optimization
the lowest free energfl]. To fold a protein in silico, it is methods for ensuring that the native state has lowest free
therefore necessary to have a sufficiently good description afnergy[15,16. The overlap method is equivalent to optimiz-
the energetics of the system. Even the most sophisticatgflq the thermodynamic stability for a specific overlap contact
all-atom potentials[2,3] and statistical potential functions map definition of the native fold. Optimizing the thermody-

[4—6] will not usually give stability of an experimentally namic stability has also been suggested as an objective in
determined native structure. Furthermore, these potentighgoretical protein design, see e.g., R&f7].

f_unctions have so many degrees .of fregdom that.nano—second In the general setup we have a parameterized energy func-
time-scale molecular dynamics simulations require of the orjg E,(R,seq with parameters, which give the energy for
der of months on even the fastest computers. To sample the, gming acid sequence seq with atomic coordinBteEhe
state space of a protein in solution with present-day computsohapility of finding theith training sequence in its native
ersitis therefore necessary to use a simplified description af; e is given by the Boltzmann weighted volume of confor-
the protein and the solvent rather than an all-atom model. | ation space compatible with tinative structuredivided by

is virtually impossible to calculate such potential functions,q total Boltzmann weighted volume of conformation space
from first principles.

In this paper we describe a method to estimate param-
etrized potential functions from a training set of known pro-

tein structures. Most previous work on estimation of poten- exl- BE,(R,seq)]JdR

tials use statistical approach@$—€], which are based on P(nat|seq,6) = el , (D
static structures. The main feature in our approach is that we f exf- BE4R,seg]dR
optimize the potentials during simulation of the folding pro-

cess, so as to maximize the thermodynamic probability of the

native folds of the whole training set. This maximum likeli- whereB=1/kT and the integral in the numerator is only over

hood estimation procedure, which is essentially Boltzmanf,e nart of conformation space associated with the native
learning[7], can be thought of as iteratively stabilizing the gy ciyre. The definition and choice of the size of the native
native structure on the one hand and *unlearn” incorrecy,; me in conformation space should reflect all expected

folds, which traps the protein during folding, on the other.,,apility such as the loss of description accuracy due to the
Other approaches exist that, rather than optimizing the thefs, jeness of the protein model, thermal variability of the

modynamic stability directly, optimize closely related mea-paiye state and the uncertainty in the determination of the
sures such as the difference between the native energy apfl siai/nuclear magnetic resona®évR) structure. Optimiz-
the energy of a set of alternative conformatid8sd], the g the probability density of the nativerysta) structure, as
suggested in Ref9], rather than a volume around the native
structure ignores these sources of variability. In this study we
*Present address: Informatics and Mathematical Modelling, Techdefine the native volume as all structures withirt€a root
nical University of Denmark, 2800 Lyngby, Denmark. Electronic mean square deviatiotRMSD) of 1 A from the crystal
address: owi@imm.dtu.dk structure. Note that although non-protein like structyeeg.,
"Present address: Bioinformatics Centre, University of Copenwith steric overlapgexist within the native volume, a suc-
hagen, Universitetsparken 15, 2100 Copenhagen, Denmark. Elecessful training will assign a high energy and thus a small
tronic address: krogh@binf.ku.dk Boltzmann weight to these.
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The objective is to maximize the joint probability of the protein. The following atom pairs are included:
11, P(nat|seq, 6) with respect to the parametefiswhereN ~ H(i)R(i), R(i)O(i), H(i)H(i+1), O(i)H(i+2) and Qi)O(i
is the number of sequences in the training set. We choose tbl). Only the first two pairs depend on the amino acid side
perform the maximization by gradient ascemf®:=¢°¢  chain, so this introduces a total of(ZD+20+2+2+2%

+A6, where =92 parameters.
Hydrogen bonding is only considered for backbone NH
Ah= ﬂVeE In P(nat|seq, ) and CO pairs. The hydrogen bond energy contains both
i

angle dependence and a 12-10 Lennard-Jones potential with
two adjustable parametersEp,= €, uij{S(thlri'To)12
~6(ony/1]°)'%,  where u;=cog ¢ "cos 0;’0‘7 for
7 2< 0", Bi'?oc'<37-r/2 and zero otherwise,© is the

with # being the learning rate(...) and <...>na§_ denoting %Iiistance between (4 and Gj), 6"HC is the NiYH()O())
Boltzmann averages over the total conformation space an Hoc! . !
ngle andd ;- the H(i)O(j)C'(j) angle.

the part associated with the native structure, respectively. 1A <0 ) g
neural computation context this is known as the Boltzmann The hydrophobic interactioy, consists of two types of
learning rule[7]. In simulations we perform the Boltzmann t€rms. The first one is a pure radial 12-6 Lennard Jones po-
averages by @generalized ensembl#lonte Carlo method. te_nt|al that should take into account _aII nor)-local, hydlropho-
The above learning rule applies to any differentiable po-Pic and other forces between thie amino acid; and thejth
tential function. The aim is to estimate a potential that gives®y- Both G,C, and RR interactions are included. ;I;he
a high probability to the correct fold under the given proteinCaCo  interaction, i.e. Xi.; e*(aj,a){(o"(&,a)/rj
model and with the chosen simulation method, which of~2(c“(a;,)/r{)®, where r{ is the G(i)C,(j) distance,
course does not guarantee that the potential is close to th@ mainly introduced to model steric constraints. The
real physics. To demonstrate the validity of the method wesecond type of term, which plays a minor role, is a
have applied it to a simple force field. The amino acid unitsurface  energy term inspired by Refs.[20]

=B [(VyEHR,5eq) = (V4 Eg(R,5€q)na], (2)

model has six atoms: SR eMML/SSR g5 F(a 01D 0™ ~bi/s], where
f(x)=0.51+tanhx)) € [0, 1] is a sigmoid non-linearity. The
R surface energy term is chosen such t@f‘éﬁf: (@) is the
—N C, C— energy change induced by taking side chajrfrom being
H o completely exposed to solvent to being completely buried.

The inner sum counts the number of neighboring amino-
where O and H are introduced to be able to define backbonacids and the adjustable parametgrb;, o 3", o " set the
hydrogen bonds and to give a more realistic local torsiorrelevant scale and bias for burial of each amino acid. The
potential. The whole side chain is representedRayso the total number of adjustable parameters for the hydrophobic
parameters relating to this is amino acid dependent, whereanergy is 2x2X (20X 19/2+20=840 for Lennard-Jones
the other atoms are treated more conventionally. The conforand 5x 20=100 for surface.
mational degrees of freedom are the torsional anglaad ¢ The temperature scale is arbitrary since the Boltzmann
(rotation around the NCbond and GC’ bond. The CR, weight only depends upon the prodgf and the scale dt
distance is adaptiveone parameter for each of the 20 aminois set during training. In the test below we choose the folding
acid9, whereas all other bond lengths and angles are fixed tttemperature” 1 3;,4=0.1 for all training examples and set
their average value as given in R¢L8]. The angle tdR, is  the initial parameter values to be on the same scale. The
fixed to the average value for,Cp. initial values are chosen such that all amino-acids have the

The energy is a generalization of the one proposed in Rebame parameter values, except for different surface energy
[19] which in turn is inspired by the classical force fields. terms[e*"(aa)].
The energy is split into local and non-local terfs E;,., To get the learning algorithm E@) to work properly we
+Enon-ocat The local interactions are mainly introduced to need reliable estimates of thermodynamic averages. To
model local steric constraints and the non-local consists ofichieve this we use parallel temperifi], where the sys-
three types of terms introduced to model pairwise interactem is simulated independently at a number,, of different
tions, hydrophobic, surface and related effe¢ts) and hy-  temperatures. In this studien,=15 ranging from T,

drogen bondinghb): Eon-iocar Enp* Enpr =0.1 to T,,»=0.8 with equal spacing on a log-scale. Once
The local energy contains two types of every cycle, where a cycle consistsNf,; elementary con-
terms Ejocai= €4/ 22i(1+cC0s 3p) +¢€,/25(1+cos 34)  formation updates, the temperature of two random systems

+3; Sy € XY r 1)2-2( XYy ¥Y)8). The sums oni  (adjacent in temperaturare exchanged with the Metropolis
are over the individual amino acids. The first two terms—probability P(accept=min(1,exdABAE)) where AE and
which are probably not so important—introduce a three foldAB are the energy and inverse temperature difference be-
symmetry and has two parameters independent of the sideveen the two systems respectively. In our case we use
chains. The last term is mainly introduced to model steridN.,,=40 of which one quarter are pivot movétation
constraints, and the sum ovErY runs over a restricted set around a random torsional angland the rest are “local’

of pairs of local atoms in amino acid i+1 andi+2 (with moves which is defined as choosing two torsional angles
terms set to zero wherr 1 ori+2 are larger than the length next to the same peptide boiiice., ; and ¢;,;) and rotate
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systems are initialized in the native state. The remaining sys- FIG. 2. (Color onling Representative decoys from the lowest
tems are initialized in low energy states found in the prewouéIree energy cluster for four peptides from top left to righb,
update in different RMSD-distance intervals RMSD from native, native structure typesCYT 88-101, 1.04 A,
(0-1 A,1-2 A,..). This ensures fast focus on relevant re- @Nelix; 2MHR 67-78, 4.74 Aq-helix; 2118 69-82, 4.4 A-tum

gions of conformation space. Subsequent long runs startin%nOI 211B 103-112, 1.63 Ag-turn.

from coil confirm that this procedure is sufficiently close to indicating that the clusters are well-separated and that it
generate equilibrated samples. As an alternative to the batghakes sense to assign a free energy to e&tblusi)=
update rule Eqg(2), one can use an online version where the—T |n P(clusi), where the probabilitP(clusi) of clusteri is
parameters are updated using a single training example atte number of decoys in clustedivided by the total number
time. In this study, we use an intermediate approach, whergf decoys. The decoy plots reveal a complex free energy
we update the parameters using three batches each with orlandscape with competing minima. In a few cases free en-
third of the example. The results presented below are obergy minima both with small and large RMSD to the native
tained using approximately 500 parameter updates. Thiold exist simultaneously. In the subsequent analysis the
training set consists of a small set of 24 protein fragmémts cluster center of the cluster with the lowest free energy was
peptides of length 11-14 of mainlya-helices andB-turns  chosen as the predicted fold.
[24]. They have been suggested to adopt their native struc- To assess the performance of the trained potential, it is
ture even as fragmen{@3]. Running the training on eight compared to the initial essentially homo-polymer potential
processors on a Silicon Graphics Origin 3000 computer, 50@nd  the results of folding with an all-atom
parameter updates take approximately 2 CPU weeks. size 05A, ie,-05,05-1,,6-65A, we get
We tested the final potential by initializing the 24 training [7,4,2,0,2,1,2,3,3,0,0,0]0 for the trained po-
sequences in random coil. After an initial equilibration, con-tential, which should be compared to
formations were saved with fixed intervals at the folding[0,0,0,0,1,0,8,5,8,1,0,1]@or the initial parameter set-
temperaturél;,y=0.1 in a long test run. These sampled con-ting and(4,0,2,3,5,3,0,1,0,2,0, 2] 2or the all-atom po-
formations are called decoys below. Some results from théential. We observe a clear improvement over the initial po-
test run are shown in Fig. 1. The decoys are clustered bgential indicating that the training process actually works and
introducing a RMSD cutoff of 0.5 A and assigning as thesimilar results—although the comparison is biased—to the
first cluster center the decoy with the most neighbors withinall-atom potential that requires many human expert man
the cutoff. We remove these decoys and repeat the procedun®urs to derive.
until all decoys have been assigned to a cluster. The cluster- Probing the significance of the folding temperature
ing is not very sensitive to the specific choice of the cutoffby performing the test run at a lower temperature
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T=0.025<T;,q shows that the overall performance—in One remedy is to make the side chain model more realistic,
terms of RMSD for the largest cluster—is significantly e.g., by introducing an explicit £atom. This would prob-
worse. This “cold denaturation” effect, which is illustrated in ably make the Ramachandran behavior “protein-like” and
Fig. 1, shows that the solution found by the algorithm isremove some of the false minima the model is currently
using entropy to stabilize the native fold. struggling with. It is also possible to go in the opposite di-
To get an understanding of the successes and failures oéction and use a more restricted conformational search
the potential we have visualized low energy structuee  space, e.g., by only sampling experimentally observed Ram-
Fig. 2) and made Ramachandran plots for the amino acidsachandran angles or using an I-Sites library to generate con-
The successful predictions are very native-like making thdormations[20]. The two different views are complementary
same hydrogen bonds as the native structure. However, sona@d the results of the CASP exercise has shown that it is
of the side chains are very close together. Although a sid@nportant to pursue both to generate good ab initio predic-
chain is “effective” with degrees of freedom averaged outtions[20].
and not as an atom, the small distance means that the char- The ultimate goal of optimizing potentials is to obtain
acteristic separation in the Lennard-Jones potential is smatbasonable predictions for sequences not in the training set
and will be sensitive to small changes in the distance betgeneralization Preliminary runs on such test sequences
tween the side chains. The structure for some of the failureshow poor generalization, which is primarily a result of the
are not “protein-like” and some of the amino acids are notsmall training set. It is therefore important to now scale up to
reproducing the Ramachandran behavior found for real proa more realistic size using more and longer sequences. We
teins. are currently working on ways to speed up the whole process
These findings show that the principle works, however, itto achieve this goal.
is clear that the potential function model can be improved in More details about parameter settings, data sets and re-
many ways. One of the great advantages of the method sults can be found at www.imm.dtu.dk/~owi/
that many terms can be added and if they do not work well
their weight wquld .end up being very low. Howeyer, it ACKNOWLEDGMENT
should be kept in mind that the better the starting point, the
more likely it is to reach a reasonable parameter set. The test This work was sponsored by a grant to the Center for
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