
Teaching computers to fold proteins

Ole Winther* and Anders Krogh†

Center for Biological Sequence Analysis, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
(Received 26 September 2003; revised manuscript received 26 April 2004; published 27 September 2004)

A new general algorithm for optimization of potential functions for protein folding is introduced. It is based
upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with
known structure. The iterative update rule contains two thermodynamic averages which are estimated by
(generalized ensemble) Monte Carlo. We test the learning algorithm on a Lennard-Jones(LJ) force field with
a torsional angle degrees-of-freedom and a single-atom side-chain. In a test with 24 peptides of known
structure, none folded correctly with the initial potential functions, but two-thirds came within 3Å to their
native fold after optimizing the potential functions.
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It is one of the long-standing challenges of science to
simulate protein folding in a computer and predict the three-
dimensional structure–the native fold. According to Anfins-
en’s hypothesis the native fold of a protein is the one with
the lowest free energy[1]. To fold a protein in silico, it is
therefore necessary to have a sufficiently good description of
the energetics of the system. Even the most sophisticated
all-atom potentials[2,3] and statistical potential functions
[4–6] will not usually give stability of an experimentally
determined native structure. Furthermore, these potential
functions have so many degrees of freedom that nano-second
time-scale molecular dynamics simulations require of the or-
der of months on even the fastest computers. To sample the
state space of a protein in solution with present-day comput-
ers it is therefore necessary to use a simplified description of
the protein and the solvent rather than an all-atom model. It
is virtually impossible to calculate such potential functions
from first principles.

In this paper we describe a method to estimate param-
etrized potential functions from a training set of known pro-
tein structures. Most previous work on estimation of poten-
tials use statistical approaches[4–6], which are based on
static structures. The main feature in our approach is that we
optimize the potentials during simulation of the folding pro-
cess, so as to maximize the thermodynamic probability of the
native folds of the whole training set. This maximum likeli-
hood estimation procedure, which is essentially Boltzmann
learning[7], can be thought of as iteratively stabilizing the
native structure on the one hand and “unlearn” incorrect
folds, which traps the protein during folding, on the other.
Other approaches exist that, rather than optimizing the ther-
modynamic stability directly, optimize closely related mea-
sures such as the difference between the native energy and
the energy of a set of alternative conformations[8,9], the

normalized difference between the native energy and the av-
erage energy over all alternative conformations[10–12], the
thermodynamic average of the overlap to the native state in a
contact map energy model[13,14] and linear optimization
methods for ensuring that the native state has lowest free
energy[15,16]. The overlap method is equivalent to optimiz-
ing the thermodynamic stability for a specific overlap contact
map definition of the native fold. Optimizing the thermody-
namic stability has also been suggested as an objective in
theoretical protein design, see e.g., Ref.[17].

In the general setup we have a parameterized energy func-
tion EusR ,seqd with parametersu, which give the energy for
an amino acid sequence seq with atomic coordinatesR. The
probability of finding theith training sequence in its native
state is given by the Boltzmann weighted volume of confor-
mation space compatible with thenative structuredivided by
the total Boltzmann weighted volume of conformation space

Psnatiuseqi,uud =

E
nati

expf− bEusR,seqidgdR

E expf− bEusR,seqidgdR

, s1d

whereb=1/kT and the integral in the numerator is only over
the part of conformation space associated with the native
structure. The definition and choice of the size of the native
volume in conformation space should reflect all expected
variability such as the loss of description accuracy due to the
crudeness of the protein model, thermal variability of the
native state and the uncertainty in the determination of the
crystal/nuclear magnetic resonace(NMR) structure. Optimiz-
ing the probability density of the native(crystal) structure, as
suggested in Ref.[9], rather than a volume around the native
structure ignores these sources of variability. In this study we
define the native volume as all structures within aCa root
mean square deviation(RMSD) of 1 Å from the crystal
structure. Note that although non-protein like structures(e.g.,
with steric overlaps) exist within the native volume, a suc-
cessful training will assign a high energy and thus a small
Boltzmann weight to these.
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The objective is to maximize the joint probability
pi=1

N Psnatiuseqi ,ud with respect to the parametersu, whereN
is the number of sequences in the training set. We choose to
perform the maximization by gradient ascentu new: =u old

+Du, where

Du = h¹uo
i

ln Psnatiuseqi,ud

=hbo
i

fk¹u EusR,seqidl − kk¹u EusR,seqidlnati
g, s2d

with h being the learning rate,k. . .l and k. . .lnati
denoting

Boltzmann averages over the total conformation space and
the part associated with the native structure, respectively. In
neural computation context this is known as the Boltzmann
learning rule[7]. In simulations we perform the Boltzmann
averages by a(generalized ensemble) Monte Carlo method.

The above learning rule applies to any differentiable po-
tential function. The aim is to estimate a potential that gives
a high probability to the correct fold under the given protein
model and with the chosen simulation method, which of
course does not guarantee that the potential is close to the
real physics. To demonstrate the validity of the method we
have applied it to a simple force field. The amino acid unit
model has six atoms:

Ri

u N Ca C8 u

H O

where O and H are introduced to be able to define backbone
hydrogen bonds and to give a more realistic local torsion
potential. The whole side chain is represented byRi, so the
parameters relating to this is amino acid dependent, whereas
the other atoms are treated more conventionally. The confor-
mational degrees of freedom are the torsional anglesf andc
(rotation around the NCa bond and CaC8 bond). The CaRi
distance is adaptive(one parameter for each of the 20 amino
acids), whereas all other bond lengths and angles are fixed to
their average value as given in Ref.[18]. The angle toRi is
fixed to the average value for CaCb.

The energy is a generalization of the one proposed in Ref.
[19] which in turn is inspired by the classical force fields.
The energy is split into local and non-local termsE=Elocal
+Enon-local. The local interactions are mainly introduced to
model local steric constraints and the non-local consists of
three types of terms introduced to model pairwise interac-
tions, hydrophobic, surface and related effects(hp) and hy-
drogen bonding(hb): Enon-local=Ehp+Ehb.

The local energy contains two types of
terms Elocal=ef /2ois1+cos 3fid+ec /2ois1+cos 3cid
+oi oX,Y e i

XYhss XY/ r i
XYd12−2ss XY/ r i

XYd6j. The sums oni
are over the individual amino acids. The first two terms–
which are probably not so important–introduce a three fold
symmetry and has two parameters independent of the side
chains. The last term is mainly introduced to model steric
constraints, and the sum overX,Y runs over a restricted set
of pairs of local atoms in amino acidi, i +1 and i +2 (with
terms set to zero wheni +1 or i +2 are larger than the length

of the protein). The following atom pairs are included:
HsidRsid, RsidOsid, HsidHsi +1d, OsidHsi +2d and OsidOsi
+1d. Only the first two pairs depend on the amino acid side
chain, so this introduces a total of 2s20+20+2+2+2+d
=92 parameters.

Hydrogen bonding is only considered for backbone NH
and C8O pairs. The hydrogen bond energy contains both
angle dependence and a 12–10 Lennard-Jones potential with
two adjustable parametersEhb=ehboi j uijh5sshb/ r ij

HOd12

−6sshb/ r ij
HOd10j, where uij =cos2 u i j

NHOcos2 u i j
HOC8 for

p /2,u i j
NHO, u i j

HOC8,3p /2 and zero otherwise,r ij
HO is the

distance between Hsid and Os jd, u i j
NHO is the NsidHsidOs jd

angle andu i j
HOC8 the HsidOs jdC8s jd angle.

The hydrophobic interactionEhp consists of two types of
terms. The first one is a pure radial 12-6 Lennard Jones po-
tential that should take into account all non-local, hydropho-
bic and other forces between theith amino acidai and thej th
aj. Both CaCa and RR interactions are included. The
CaCa interaction, i.e. oi. j easai ,ajdhssasai ,ajd / r ij

ad12

−2ssasai ,ajd / r ij
ad6j, where r ij

a is the CasidCas jd distance,
is mainly introduced to model steric constraints. The
second type of term, which plays a minor role, is a
surface energy term inspired by Refs.[20]
oi

R e i
surfff1/sio jÞi−1,i,i+1

R fsss j
surf,0−r ij

Rd /s j
surfd−bi /sig, where

fsxd;0.5s1+tanhsxddP f0,1g is a sigmoid non-linearity. The
surface energy term is chosen such thatei

surf=esurfsaid is the
energy change induced by taking side chainai from being
completely exposed to solvent to being completely buried.
The inner sum counts the number of neighboring amino-
acids and the adjustable parameterssi ,bi ,s i

surf,0,s i
surf set the

relevant scale and bias for burial of each amino acid. The
total number of adjustable parameters for the hydrophobic
energy is 2323 s20319/2+20d=840 for Lennard-Jones
and 5320=100 for surface.

The temperature scale is arbitrary since the Boltzmann
weight only depends upon the productbE and the scale ofE
is set during training. In the test below we choose the folding
“temperature” 1/bfold=0.1 for all training examples and set
the initial parameter values to be on the same scale. The
initial values are chosen such that all amino-acids have the
same parameter values, except for different surface energy
termsfesurfsaaidg.

To get the learning algorithm Eq.(2) to work properly we
need reliable estimates of thermodynamic averages. To
achieve this we use parallel tempering[21], where the sys-
tem is simulated independently at a numberNtempof different
temperatures. In this studyNtemp=15 ranging fromTmin
=0.1 to Tmax=0.8 with equal spacing on a log-scale. Once
every cycle, where a cycle consists ofNconf elementary con-
formation updates, the temperature of two random systems
(adjacent in temperature) are exchanged with the Metropolis
probability Psacceptd=min(1,expsDbDEd) where DE and
Db are the energy and inverse temperature difference be-
tween the two systems respectively. In our case we use
Nconf=40 of which one quarter are pivot moves(rotation
around a random torsional angle) and the rest are “local”
moves which is defined as choosing two torsional angles
next to the same peptide bond(i.e., ci and fi+1) and rotate
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them opposite angles. We collect statistics for 104 cycles
between each update of the adjustable parameters. We
choose the folding temperature to be the minimum tempera-
ture Tfold=Tmin and thus only use the statistics for this tem-
perature to update the parameters. To ensure sampling of the
native conformations, a number(typically 3) of the Ntemp
systems are initialized in the native state. The remaining sys-
tems are initialized in low energy states found in the previous
update in different RMSD-distance intervals
s0–1 Å,1–2 Å, . . .d. This ensures fast focus on relevant re-
gions of conformation space. Subsequent long runs starting
from coil confirm that this procedure is sufficiently close to
generate equilibrated samples. As an alternative to the batch
update rule Eq.(2), one can use an online version where the
parameters are updated using a single training example at a
time. In this study, we use an intermediate approach, where
we update the parameters using three batches each with one-
third of the example. The results presented below are ob-
tained using approximately 500 parameter updates. The
training set consists of a small set of 24 protein fragments(or
peptides) of length 11-14 of mainlya-helices andb-turns
[24]. They have been suggested to adopt their native struc-
ture even as fragments[23]. Running the training on eight
processors on a Silicon Graphics Origin 3000 computer, 500
parameter updates take approximately 2 CPU weeks.

We tested the final potential by initializing the 24 training
sequences in random coil. After an initial equilibration, con-
formations were saved with fixed intervals at the folding
temperatureTfold=0.1 in a long test run. These sampled con-
formations are called decoys below. Some results from the
test run are shown in Fig. 1. The decoys are clustered by
introducing a RMSD cutoff of 0.5 Å and assigning as the
first cluster center the decoy with the most neighbors within
the cutoff. We remove these decoys and repeat the procedure
until all decoys have been assigned to a cluster. The cluster-
ing is not very sensitive to the specific choice of the cutoff

indicating that the clusters are well-separated and that it
makes sense to assign a free energy to each:Fsclus id=
−T ln Psclus id, where the probabilityPsclus id of clusteri is
the number of decoys in clusteri divided by the total number
of decoys. The decoy plots reveal a complex free energy
landscape with competing minima. In a few cases free en-
ergy minima both with small and large RMSD to the native
fold exist simultaneously. In the subsequent analysis the
cluster center of the cluster with the lowest free energy was
chosen as the predicted fold.

To assess the performance of the trained potential, it is
compared to the initial essentially homo-polymer potential
and the results of folding with an all-atom
size 0.5 Å, i.e.,0–0.5,0.5–1, . . .,6–6.5 Å, we get
f7,4,2,0,2,1,2,3,3,0,0,0,0g for the trained po-
tential, which should be compared to
f0,0,0,0,1,0,8,5,8,1,0,1,0g for the initial parameter set-
ting andf4,0,2,3,5,3,0,1,0,2,0,2,2g for the all-atom po-
tential. We observe a clear improvement over the initial po-
tential indicating that the training process actually works and
similar results—although the comparison is biased—to the
all-atom potential that requires many human expert man
hours to derive.

Probing the significance of the folding temperature
by performing the test run at a lower temperature

FIG. 1. (Color online) Decoy plots–energy vs RMSDsÅd for
two peptides at the folding temperature and below. These two pep-
tides “cold denaturate.” Cluster centers are marked with a circle.
The largest cluster(in blue) is, in all four cases, the one with the
lowest RMSD.

FIG. 2. (Color online) Representative decoys from the lowest
free energy cluster for four peptides from top left to right(ID,
RMSD from native, native structure type): 5CYT 88-101, 1.04 Å,
a-helix; 2MHR 67-78, 4.74 Å,a-helix; 2I1B 69-82, 4.4 Å,b-turn
and 2I1B 103-112, 1.63 Å,b-turn.
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T=0.025,Tfold shows that the overall performance—in
terms of RMSD for the largest cluster—is significantly
worse. This “cold denaturation” effect, which is illustrated in
Fig. 1, shows that the solution found by the algorithm is
using entropy to stabilize the native fold.

To get an understanding of the successes and failures of
the potential we have visualized low energy structures(see
Fig. 2) and made Ramachandran plots for the amino acids.
The successful predictions are very native-like making the
same hydrogen bonds as the native structure. However, some
of the side chains are very close together. Although a side
chain is “effective“ with degrees of freedom averaged out
and not as an atom, the small distance means that the char-
acteristic separation in the Lennard-Jones potential is small
and will be sensitive to small changes in the distance be-
tween the side chains. The structure for some of the failures
are not “protein-like” and some of the amino acids are not
reproducing the Ramachandran behavior found for real pro-
teins.

These findings show that the principle works, however, it
is clear that the potential function model can be improved in
many ways. One of the great advantages of the method is
that many terms can be added and if they do not work well
their weight would end up being very low. However, it
should be kept in mind that the better the starting point, the
more likely it is to reach a reasonable parameter set. The test
suggests that the representation of side chains in the potential
with just one pseudo-atom and a fixed angle is too crude.

One remedy is to make the side chain model more realistic,
e.g., by introducing an explicit Cb atom. This would prob-
ably make the Ramachandran behavior “protein-like” and
remove some of the false minima the model is currently
struggling with. It is also possible to go in the opposite di-
rection and use a more restricted conformational search
space, e.g., by only sampling experimentally observed Ram-
achandran angles or using an I-Sites library to generate con-
formations[20]. The two different views are complementary
and the results of the CASP exercise has shown that it is
important to pursue both to generate good ab initio predic-
tions [20].

The ultimate goal of optimizing potentials is to obtain
reasonable predictions for sequences not in the training set
(generalization). Preliminary runs on such test sequences
show poor generalization, which is primarily a result of the
small training set. It is therefore important to now scale up to
a more realistic size using more and longer sequences. We
are currently working on ways to speed up the whole process
to achieve this goal.

More details about parameter settings, data sets and re-
sults can be found at www.imm.dtu.dk/~owi/
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